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Abstract

APMC is a model checker dedicated to the quantitative verification of fully probabilistic systems
against LTL formulas. Using a Monte-Carlo method in order to efficiently approximate the veri-
fication of probabilistic specifications, it could be used naturally in a distributed framework. We
present here the tool and its distribution scheme, together with extensive performance evaluation,
showing the scalability of the method, even on clusters containing 500+ heterogeneous workstations.

Keywords: Model checking, APMC, LTL formula, Monte-Carlo method, probabilistic
specification

1 Introduction

Probabilistic model checking is an algorithmic method that aims to auto-
matically verify that quantitative properties hold in probabilistic systems.
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The main drawback of the method is the so-called state space explosion phe-
nomenon, that is the fact that workstations run out of memory while verifying
large probabilistic systems. A common direction of research to address this
problem is to design distributed model checking algorithms in order to handle
larger systems. Most of these methods are about the distribution of the state
space on several machines.

In the last couple of years, we showed that a completely different approach
can be used in order to save space while verifying large systems. Indeed, we
proposed to use approximation to eliminate the space complexity of probabilis-
tic model checking. The idea of using approximation becomes more and more
popular and is now used by several research groups [16,4]. Our approach [5] is
more precisely based on the sampling of execution paths of the probabilistic
system. This method is, by construction, massively parallel. Indeed, one can
distribute the computation on a large cluster of machines in the following way:
each machine generates execution paths and verifies the specification on each
of these paths, then sends the obtained results to a master. After a certain
time of computation, the master has received enough results to conclude on
the (approximate) validity of the quantitative property to be checked.

In this paper, we explain in detail the method we developed and we analyze
the performances of our methodology on very large clusters of heterogeneous
machines (up to 500 machines). All the experiments were done using APMC
(Approximate probabilistic Model Checker), which is the tool that implements
our method.

The paper starts with a short review of the related work. Then, in section
3, we give the theoretical foundations of APMC and explain its architecture
and implementation. Last, we present in section 4 the results of extensive
experiments on various case studies and sets of machines. These experiments
show the scalability of the approach.

2 Related Work

In the last few years, distributed model checking has gained a renewal of
interest, due to the emergence of easily available “computing farms”, that is
very large sets of machines usable for computation. There is now a challenge
of using such clusters in every domain of computer science. Several methods
have been developed in order to speed up the model checking and/or avoid
the state space explosion phenomenon.

One of the first ideas in the use of parallelization was to distribute the
construction of the state-space (see for example [13,3]). Basically this is done
using a partition of the set of the reachable states by way of a hashing function,
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this partition induces a natural parallelization.

Concerning the manipulation of the state space, an other way of research is
to improve the size of the transitions systems that can be handled by the model
checker. Out of core methods were designed to do this [10,9], particularly for
probabilistic systems (that is Markov models).

The main convenience of these techniques is their potential to integrate
within classical model checkers, such as the state of the art probabilistic model
checker, PRISM [11].

A lot of others methods have been developed and discussed [7], but none of
them distribute the whole process of the verification in a massively distributed
way (e.g. hundreds of machines).

The method we designed for the distributed and approximate verification
of probabilistic systems is completely different since it is naturally a parallel
method (due to the use of a Monte-Carlo sampling technique). There already
exists other sampling techniques for the verification of probabilistic systems
[16,4]. The method of [16] uses the framework of hypothesis testing while [4]
uses also a Monte-Carlo method. These two methods have also the potential
of being parallelized, but, to our knowledge, it wasn’t done by now.

3 Approximate Probabilistic Model Checking

3.1 Theoretical Foundations

The APMC approach [5] uses an efficient Monte-Carlo method to approximate
satisfaction probabilities of monotone properties over fully probabilistic tran-
sitions systems. Properties to be checked are expressed in Linear Temporal
Logic (LTL).

3.1.1 APMC method

LTL formulas are built over a set of atomic propositions labeling states.

Definition 3.1 A fully probabilistic transition system (PTS or DTMC for
Discrete Time Markov Chain) is a tuple M = (S, s, P ) where S is a set of
states, s is the initial state, and P is a transition probability function i.e. for
all s ∈ S,

∑
t∈S

P (s, t) = 1.

We denote by Path(s) the set of paths whose first state is s. The length of
a path π is the number of states in the path and is denoted by |π|, this length
can be infinite. The probability measure Prob over the set Path(s) is defined
in a classical way [8]. We denote by Prob[φ] the measure of the set of paths
{π | π(0) = s and M, π |= φ} (see [15]). Let Pathk(s) be the set of all paths
of length k > 0 starting at s in a PTS. The probability of an LTL formula φ
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on Pathk(s) is the measure of paths satisfying φ in Pathk(s) and is denoted
by Probk[φ].

Definition 3.2 An LTL formula φ is monotone if and only if for all k > 0,
for all paths π of length k, M, π |= φ =⇒ M, π+ |= φ, where π+ is any path
of which π is a prefix.

A basic property of monotone formulas is the following one: if φ is a
monotone formula, 0 < b ≤ 1 and if there exists some k ∈ N

∗ such that
Probk[φ] ≥ b, then Prob[φ] ≥ b.

In order to verify some probabilistic specification Prob[φ] ≥ b, we choose
a first value of k = O(log|S|), then we approximate the probability Probk[φ]
and test if the result is greater than b. If Probk[φ] ≥ b is true, then the
monotonicity of the property guarantees that Prob[φ] ≥ b is true. Otherwise,
we increment the value of k and approximate again Probk[φ]. We iterate this
procedure within a certain bound which, in many cases, is logarithmic in the
number of states. In the worst case, this bound is strongly related to the
rapid mixing rate of the underlying Markov chain [12]. If the results of all
tests Probk[ψ] ≥ b are negative, then we can conclude that Prob[ψ] �≥ b. If we
are interested only with probabilistic time bounded properties, as here, we can
set k to the maximum time bound in subformulas of the specification. In the
following, we describe how to approximate efficiently the probability Probk[φ].

3.1.2 Randomized approximation scheme

In order to estimate the probabilities of monotone properties with a simple
randomized algorithm, we generate random paths in the probabilistic space
underlying the DTMC structure of depth k and compute a random variable
A/N which estimates Probk[ψ]. To verify a statement Probk[ψ] ≥ b, we test
whether A/N > b − ε. Our decision is correct with confidence (1 − δ) after
a number of samples polynomial in 1

ε
and log 1

δ
. The main advantage is that,

in order to design a path generator, we need only a succinct representation
of the transition graph, that is a succinct description in an input language,
which is the same as in PRISM (Reactive Modules [1]). Our approximation
problem is defined by giving as input x a succinct representation of a DTMC,
a formula and a positive integer k. The succinct representation is used to
generate a set of execution paths of length k. A randomized approximation
scheme is a randomized algorithm which computes with high confidence a
good approximation of the probability measure µ(x) of the set of execution
paths satisfying the formula φ.

Definition 3.3 A fully polynomial randomized approximation scheme (FPRAS)
for a probability problem is a randomized algorithm A that takes an input x,
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Fig. 1. APMC components

two real numbers 0 < ε, δ < 1 and produces a value A(x, ε, δ) such that:

Prob
[
|A(x, ε, δ) − µ(x)| ≤ ε

]
≥ 1 − δ.

The running time of A is polynomial in |x|, 1

ε
and log 1

δ
.

The probability is taken over the random choices of the algorithm. We call
ε the approximation parameter and δ the confidence parameter. The APMC
approximation algorithm consists in generating O( 1

ε2 . log 1

δ
) paths, verifying

the formula φ on each path and computing the fraction of satisfying paths,
that is an ε-approximation of Probk[φ].

Theorem 3.4 The APMC approximation algorithm is a fully randomized ap-

proximation scheme for the probability p = Probk[φ] of an LTL formula φ if

p ∈]0, 1[.

This result is obtained by using Chernoff-Hoeffding bounds [6] on the tail of
the distribution of a sum of independent random variables. The time complex-
ity of the algorithm is polynomial in log(1/δ) and 1/ε. The space complexity
is linear in the length of execution paths.

3.2 Architecture of APMC

APMC architecture is twofold, as described in figure 1. The first component,
the APMC Compiler, produces an ad-hoc verifier including a sample gener-
ator and a checker for a given model (described in Reactive Modules) and a
given property (LTL). The second module, the APMC Deployer, takes this
verifier and the set of available computing resources, deploys the verifier on
this set of computers and collects the result, which is the approximated value
of satisfaction probability of the formula on the model.

The technique used to approximate this value assumes the verification of
the formula on a large set of independent samples of bounded length. We
use the independence property of the samples to distribute the generation and
verification of samples.

The deployment is performed following a spanning tree of bounded arity.
Each node of the tree runs on a single computing resource, and spawns children
up to the bound on other available resources. While its parent still accepts
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Fig. 2. APMC deployment scheme

results from it, and until the number of collected samples is greater than
the requested number if it is the root, it generates a sample and verifies the
property on it. At each verification, the counters of false and true samples are
updated. Regularly (that is on a fixed timeout), each node sends its counters
of false and true samples to its parent, and resets them (except for the root,
which awaits the end of the computation to produce these numbers). When
a node receives these counters from one of its children, it aggregates these
numbers as if it produced the verification (see figure 2).

This deployment technique is assumed to be scalable, since the number
and amount of data of all communications concerning a given node depends
only on the arity bound of the tree. The tree topology was chosen to reduce
the starting time, which is proportional to the depth of the tree, hence loga-
rithmic in the number of computing resources. It also provides a logarithmic
latency to aggregate the results from all nodes in the root. A drawback of this
method is that the system may over generate and verify some samples (which
does not preclude the validity of the final result, but may provide a better
approximation than requested), up until the root claims that enough samples
have been generated, and the tree is destroyed. This diffusion is also linear in
the height of the tree and proportional to the communication timeout.

As for the parallelization, the technique provides a simple solution for
fault tolerance: since each generation and verification is independent from
the others, some of these verifications may be lost without consequences on
the quality of the result. Thus, if a computing node crashes, its children will
presume that the computation is finished and will stop running; its parent
detects it and simply spawns a new subtree. All the workers of the subtree
rooted at the crashed process are assumed lost and free to use again.
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3.3 Implementation

The APMC software consists of three independent components: the parser,
the core library and the deployment tool. This design provides the possibility
to include the engine (core library) in many model checkers, like we are doing
with the integration into the PRISM tool [11].

The parser is a simple lex/yacc program which parses a sub-language of
the PRISM language (Reactive Modules [1]), and a simple language for LTL
formulas. It then calls the core APMC library to produce an internal succinct
representation of the model (linear in the size of the Reactive Modules file),
and of the properties (linear in the size of the property file).

The library then produces the ad-hoc generator and verifier as ANSI C code
(the generator/verifier is a standalone program deployed by the Deployer).
APMC implements three strategies to generate the code of this program with
respect to the synchronizations of the Reactive Modules: the first one (called
sync at compile-time) pre-computes all the combinations of rules, thus build-
ing the synchronized succinct model representation, where each rule is not
synchronized. This is the most efficient strategy with respect to time, but it
is the most memory consuming strategy. At runtime, the generator simply
evaluates each guard on the current configuration, building the set of fireable
rules. A rule is chosen randomly between these fireable rules and the action
is triggered to compute the next configuration. The second strategy (sync at

run-time) is provided to handle larger, highly synchronized, models. There,
the evaluation of the guards is done together with the computation of synchro-
nizations, which is thus done at each simulation step, spending more time to
compute the set of fireable rules, but using much less memory. This strategy is
used only when the model induces a lot of synchronization and the generated
code prohibits efficient compilation. The last strategy is an improvement of
the first one: for some models, at each step, most of the rules are fireable.
When this is the case, instead of first computing the fireable rules (thus eval-
uating each guard on the configuration), a rule is chosen uniformly, and if its
guard is true, its action is triggered. If its guard is false, another rule is chosen
randomly.

The main loop of the code produced by the library consists of generating a
path (i.e. a set of configurations) of given length, and evaluating the property
(linear time formula) on each path. The number of iterations of this loop is a
parameter to the program.

The last component of the APMC software is the deployment tool. This
tool takes the code produced by the library, compiles it on different archi-
tectures and deploys the programs on a set of computing nodes following a
regular spanning tree of bounded arity. The program executed on the nodes
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includes two parts: an I/O part, and a computing part. The computing part
is generated by the core library, while the I/O part is generic. This I/O part
implements the spanning tree. It handles the connections with the children
and with the parent of the node. Parent connection is handled through the
standard output. Messages are sent regularly to the parent, according to the
algorithm described in the architecture section. When this file descriptor is
closed, the computation is stopped and the program exits. Children connec-
tions are handled using a double pipe with an ssh (or rsh) command. The
deployment tool comes with a set of shell scripts passed to the ssh command.
These scripts download and compile for the new spawned computing node the
generated code, split the list of available resources between the children and
launch recursively the compiled program on the node. This technique does
not presume the existence of NFS, or other file sharing system. Currently,
we assume that each node provides a remote shell service (ssh or rsh), and
the autotools, Make and a C compiler. Current work in progress will assume
only the C compiler and will reduce the amount of needed compilations by
factorizing the compilations for each kind of architecture, instead of doing a
compilation on each machine.

4 Performance Evaluation

The experimental platform consists of 500 Athlon 3000+ workstations with
1Gb of RAM, running under NetBSD 1.6.1, 100Mb ethernet network. The
remote shell program used is OpenSSH, with public key authentication. The
compiler on each worker is gcc-2.95.3, with the -03 option.

All the measurements are done on the dining philosopher problem, check-
ing a double accessibility property. The dining philosopher problem [14], being
well studied, allows us to separate between the phenomenons due to the tool
and those due to the model itself. Since this model does not include syn-
chronizations, we conducted all experiments using the most efficient strategy,
“sync at compile-time”.

The first set of figures (figure 3) describes the acceleration in time due to
the parallelization. To obtain these results, we ran APMC on the 160 dining
philosopher problem [14], on an increasing number of workers following the
binary tree deployment described in section 3.2. For all these experiments, we
set ε = 10−2, δ = 10−10 (that is a generation of 940,000 paths by experiment),
which are common values for these parameters, and k = 200. On the curves
are represented the mean value of a set of 80 measures by point.

The first figure 3(a) shows the total execution time as function of the num-
ber of workers on a double logarithmic scale. One can see that, as expected,
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Fig. 3. Time of model checking for the randomized dining philosophers problem

the execution time decreases quickly as the number of workers increases. The
figure also shows a slowdown in the linear acceleration when having more than
64 workers.

The next figure 3(b) focuses on this phenomenon. The x axis represents
the number of workers, and the y axis the relative slowdown given by the
formula yx = t1/(x × tx) where tx is the time measured in figure 3(a) for
the given x. With this measure, the value 1.0 represents perfect scalability,
whereas smaller values demonstrate a lower use of the whole system.

One can see that when using more than 32 workers, the relative slowdown
is higher than 10% on this example. The deployment phase is time consuming,
and starting at 32 workers, the deployment duration is not negligible compared
to the computation time. This accumulated time consumption is exponential
in the depth of the tree (that is linear in the number of workers), nonetheless
each worker waits at most for a logarithmic time before beginning its execution,
which explains why adding workers is an improvement up to the amount where
the computation ends before launching the last workers.

Figure 4 shows the time needed to verify the model with the same pa-
rameters as in figure 3 on a cluster of 256 workers, as function of the arity
of the deployment tree. Obviously, except the case of arity 1 (a string of
workers), increasing the arity of the tree does not improve significantly the
performances of the deployment system. On the other hand, increasing the
arity does not hinder the performances, so as the figure 3 teaches us, when
the relative slowdown becomes too large, it makes sense to increase the arity
in order to decrease the depth of the tree.

The last figure 5 presents the time needed to verify the 3 to 130 dining
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philosopher problems. All verifications were done on paths of length 200. 32
workers were used to verify 940,000 paths. The aim of this experiment is to
evaluate the generation of the code. Indeed, since all verifications use the same
path length and the same number of paths, the time differences are only due
to the quality of the generated code.

One can see that the curve is in three linear parts. The main loop of the
code consists in iterating over all the guards of the model (which are functions
of the program). The number of guards increases linearly with the number
of philosophers. So it is natural that the time needed to iterate over all the
guards is linear in the number of philosophers. It is less expected that the
curve presents three different slopes. Since the generated code occupies up
to 256Kb more resident memory for the 130 philosophers problem than for
the 3 philosopher problem, we suspect that this is due to CPU code cache
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invalidations.

As a validation of APMC as a cycle stealing verification tool, we conducted
another experiment including all the available computers of the EPITA school
of computer science. We verified the 160 dining philosophers problem on a
platform of 500 computers used by other applications at the same time. We
conducted two experiments: the first where 940,000 paths were generated, the
other one with 9,400,000. The first experiment took 99 seconds, the second
one 446 seconds.

It is interesting to note that, although the amount of computation needed
in the second experiment was ten times higher than for the first, the time
needed to complete it was only 4.5 times higher. It is due to the fact that for
the first experiment, the system does not have enough time to take advantage
of the full platform.

5 Discussion

Traditionally, model checking is a highly expensive computational activity.
The main drawback of the method is the memory needed to finalize the veri-
fication of large systems. “Classical” distributed model checking aims to lower
the memory cost by distributing the state space. Using approximation tech-
niques, we can trade the memory cost with simple computations on a large
number of system executions paths. This is the point where we can massively
distribute the process, by partitioning the sample into sets that are indepen-
dently processed.

Using this method, we can verify very large systems using a constant
amount of memory (when the length k is fixed). The power of computation
usable for the verification is limited only by the number of available computers.

However, experiments show that for each system, there is a critical number
of machines after which the time needed for the verification may not decrease
significantly. This is due to the non negligible cost of the deployment scheme,
which is a function of the depth of the tree. Other experiments showed that
increasing the arity of the deployment tree may reduce the depth with small
performance cost. There is a trade-off between the depth of the tree and its
arity. With a high depth, there will not be any communication bottleneck for
the nodes of the tree, while with a high arity, the communication load on each
node will be higher. Nonetheless, since the amount of communication is low,
one can choose a reasonable arity without losses of performances.

APMC is also interesting from an economic point of view. Since APMC
runs in background using few memory, it can run on classical desktop ma-
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chines (implementing cycle stealing techniques), thus avoiding the cost of an
expensive cluster of dedicated workstations.
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